Basalt formations, such as these towers on the Columbia River in Washington state, could be used to trap carbon dioxide. Image: Kevin Schafer/Corbis
-
Showcasing more than fifty of the most provocative, original, and significant online essays from 2011, The Best Science Writing Online 2012 will change the way...
Read More??
By early August, scientists will have pumped 1,000 tons of pure carbon dioxide into porous rock far below the northwestern United States. The goal is to find a permanent home for the carbon dioxide generated by human activities.
Researchers at the US Department of Energy?s Pacific Northwest National Laboratory (PNNL) in Richland, Washington, began the injections into the Columbia River Basalt formation near the town of Wallula on 17?July. The rock contains pores created as many as 16?million years ago, when magma flowed across what is now the Columbia River Basin. Bubbles of CO2 migrated to the edges of the magma as it cooled, forming layers of holes sandwiched between solid rock (see 'Rock steady').
In pumping emissions back underground, ?we are returning the carbon dioxide from whence it came?, says Pete McGrail, an environ?mental engineer at the PNNL who is heading the experiment, part of a larger energy-department program on ways to sequester carbon.
The Wallula project is the second of two worldwide to target basalt formations, which scientists hope can hold ? and permanently mineralize ? vast quantities of gas. In basalt, dissolved CO2 should react with calcium and magnesium to form limestone over the course of decades. Until the gas is locked away, the porous basalt layers are capped by solid rock that will prevent leaking. That should eliminate concerns about leakage that have dogged other proposals to store CO2 deep underground, often in sandstone reservoirs.
Source: PNNL
The basalt reactions are part of a natural weathering process that has helped to regulate atmospheric CO2 levels throughout geological time. Scientists have analyzed mineralization in the lab, but it is only now being tested in the field.
Researchers working on the other basalt project, based in Iceland and run by a consortium of US and European scientists along with Reykjavik Energy, made their first CO2 injections last year and will conduct another round this year. Early results look promising, says Juerg Matter, a geochemist at Columbia University?s Lamont-Doherty Earth Observatory in Palisades, New York, who is working on the Iceland project. ?The mineralization reaction is most likely faster than what we in the community had thought,? says Matter, who has also contributed to the Wallula project. Assuming that holds true for basalt generally, ?you reduce the risk of leakage, and you can pretty much walk away from your storage reservoirs?.
In Wallula, researchers are already monitoring a series of shallow wells around the injection site for signs of CO2 leaking into the soil and groundwater. Once the injection is finished, they will start taking samples from the injection well to monitor water chemistry, track changes in carbon isotopes and check for other evidence of reactions. Lab tests and computer simulations suggest that in general, around 20% of the CO2 should be mineralized within 10?15 years, says McGrail.
The pilot project, however, is operating on a shorter timescale. Fourteen months after the end of injection, the team plans to drill another well and pull up a core of rock to assess the results, says McGrail. ?At that point, we are hoping to have some carbonized rock in our hands.?
But achieving sequestration is only half the battle: scientists and engineers must still work out how to capture CO2 from industrial facilities and transport it to the sequestration site cost-effectively. And even if a carbon-mineralization industry took off, establishing it on a global level would require an undertaking on the scale of rebuilding the oil industry.
Source: http://rss.sciam.com/~r/ScientificAmerican-News/~3/YGHN01hs8gE/article.cfm
MTV Movie Awards 2013 masters masters leaderboard Psy Gentleman Angel Cabrera Jay Z Open Letter glee
No comments:
Post a Comment